PROJET AUTOBLOG


Sam & Max: Python, Django, Git et du cul

Site original : Sam & Max: Python, Django, Git et du cul

⇐ retour index

5 choses à apprendre en priorité en Python

dimanche 22 décembre 2013 à 09:57

Quand on apprend un nouveau langage de programmation, on apprend d’abord les bases. Et pour la plupart des langages, elles sont communes : déclarer une variable, faire des conditions et des boucles, faire des fonctions, importer un code d’un autre fichier, etc.

Ce qui va différencier le moment où vous savez programmer dans CE langage, ce sont des notions qui lui sont spécifiques et que vous commencez à maitriser.

Voici 5 notions spécifiques au langage qu’il faut apprendre en priorité si vous voulez pouvoir dire “je code en Python” :

Pip

Pip est la moyen le plus utilisé d’installer une bibliothèque externe dans l’environnement Python. Dès qu’on veut faire un projet sérieux, on en a besoin. Tellement qu’il va en fait être inclus par défaut dans Python 3.4.

Lire l’article sur pip.

Virtualenv

Virtualenv permet d’isoler plusieurs installations de Python. A partir du moment où l’on travaille sur plusieurs projets en même temps, il devient vite indispensable. Mais personnelement, je l’utilise même quand je n’ai qu’un projet installé sur une machine car il me permet de le séparer du setup Python du système et d’utiliser des hooks.

Un outil qui a été ajouté dans la lib standard en Python 3.3. J’apprécie que le pragmatisme de l’évolution de Python qui intègre petit à petit les projets qui se sont révélés les outils de facto dans la communauté.

Lire l’article sur virtualenv.

Les listes en intention

J’ai envie de dire l’itération en générale, mais c’est un très vaste sujet, et il est couvert en grande partie par les 3 derniers points.

La liste en intention, ou liste en compréhension, est une manière de boucler sur un itérable (souvent une liste), avec optionellement un filtre, afin de produire une nouvelle liste. En une ligne.

C’est stylistiquement la marque de fabrique de Python (même si c’est piqué à Haskell). C’est également ce qui le rend aussi expressif. On peut presque coder tout un programme en déclaratif avec des enchainements de listes en intention.

C’est beau, propre, efficace et court. IN-DIS-PEN-SA-BLE.

Lire l’article sur les listes en intention.

L’unpacking

L’unpacking est une autre fonctionalité typiquement pythonienne qui permet de prendre un itérable (souvent un tuple), et de mettre ses éléments dans des variables d’une traite.

Cela permet d’augmenter drastiquement la lisibilité des programmes.

Lire les articles sur l’unpacking.

Les générateurs

Les générateurs permettent non seulement un énorme gain en performance, mais en plus ils autorisent le traitement itératif de flux de données dont on ne connait pas la taille en avance, voire de taille infinie. Si vous utilisez des expressions génératrices, vous pourrez le faire en déclaratif. Si vous utilisez yield, vous pourrez cacher un algorithme complet derrière une simple boucle for.

Lire l’article sur yield.

Le reste ?

Tout le reste, c’est du détail. Les décorateurs, la POO, l’opérateur with, les métaclasses, les astuces magiques pour faire ceci ou cela. C’est bien, mais ça peut attendre. Ce sont ces 5 notions, qui, bien utilisées, feront d’un programmeur un dev Python.

flattr this!

De l’intérêt des tuples comme clé de dictionnaire

samedi 21 décembre 2013 à 09:18

On peut utiliser n’importe quel objet hashable comme clé de dictionnaire en Python, pas uniquement des strings. Donc des entiers bien entendu, mais également, et c’est rarement utilisé, des tuples.

Imaginez que vous ayez une structures de données ainsi initialisée :

from random import choice, randint
 
tags = ('personne', 'animal', 'objet')
depart = {}
 
depart = {'%s_%s' % (choice(tags), randint(0, 10)): None for x in range(10)}

Cela donne quelque chose comme ça :

{u'personne_6': None,
 u'personne_5': None,
 u'objet_9': None,
 u'objet_6': None,
 u'objet_4': None,
 u'personne_8': None,
 u'objet_2': None,
 u'objet_0': None,
 u'animal_8': None}

On voit que les clés ont ici une valeur sémantique importante : elles sont porteuses de sens.

Si vous voulez la liste des nombres utilisés, il va vous falloir changer votre structure de données : en avoir plusieurs séparées, probablement. Ou alors faire de la manipulation de chaîne à base de split() et de casting.

Par contre, si vous utilisez un tuple comme clé, vous avez le même format pour votre dictionnaire depart, avec les mêmes possibilités, mais en plus un accès aux clés plus complet.

Déjà le code de génération est plus simple :

depart = {(choice(tags), randint(0, 10)): None for x in range(10)}

Ce qui donne :

{(u'animal', 2): None,
 (u'personne', 5): None,
 (u'personne', 4): None,
 (u'objet', 6): None,
 (u'objet', 10): None,
 (u'animal', 7): None,
 (u'animal', 1): None,
 (u'animal', 10): None,
 (u'personne', 8): None}

Mais en prime, on peut faire ça :

for (tag, number), value in depart.items():
    print tag, number, value
 
## animal 2 None
## personne 5 None
## personne 4 None
## objet 6 None
## objet 10 None
## animal 7 None
## animal 1 None
## animal 10 None
## personne 8 None

Bref, quand vos clés ont une valeur sémantique importante, pensez à utiliser des tuples, voir carrément, un namedtuple, qui est une structure de données trop souvent ignorée alors qu’elle est très puissante, et peut remplacer bien des classes conteneurs.

flattr this!

Changement dans l’unpacking des iterables en Python 3

vendredi 20 décembre 2013 à 08:49

Ahhh, l’unpacking… On croit qu’on a complètement fait le tour de cette fonctionalité merveilleuse, et PAF, on découvre encore autre chose.

Par exemple, la syntaxe a été améliorée avec Python 3, et accepte maintenant un unpacking partiel !

Ca se fait en l’utilisant l’opérateur splat, c’est à dire l’étoile :

>>> l = list(range(5))
>>> l
[0, 1, 2, 3, 4]
>>> a, *b = l
>>> a
0
>>> b
[1, 2, 3, 4]
>>> a, *b, c = l
>>> a
0
>>> b
[1, 2, 3]
>>> c
4

Ca marche bien entendu également dans les boucles for.

flattr this!

Article retiré pour cause de grosse merde

jeudi 19 décembre 2013 à 09:10

Désolé pour ceux qui ont reçu l’article via RSS ou email. Je le retire. C’était de la merde.

flattr this!