
Semantic Image Synthesis with Spatially-Adaptive Normalization

Taesung Park1∗ Ming-Yu Liu2 Ting-Chun Wang2 Jun-Yan Zhu2,3

1UC Berkeley 2NVIDIA 3MIT CSAIL

sky

sea

tree

cloud

mountain

grass

Figure 1: Our model allows user control over both semantic and style as synthesizing an image. The semantic (e.g., existence
of a tree) is controlled via a label map (visualized in the top row), while the style is controlled via the reference style image
(visualized in the leftmost column). Please visit our website for interactive image synthesis demos.

Abstract

We propose spatially-adaptive normalization, a sim-
ple but effective layer for synthesizing photorealistic im-
ages given an input semantic layout. Previous methods
directly feed the semantic layout as input to the deep net-
work, which is then processed through stacks of convo-
lution, normalization, and nonlinearity layers. We show
that this is suboptimal as the normalization layers tend
to “wash away” semantic information. To address the
issue, we propose using the input layout for modulating
the activations in normalization layers through a spatially-
adaptive, learned transformation. Experiments on several
challenging datasets demonstrate the advantage of the pro-
posed method over existing approaches, regarding both vi-

∗Taesung Park contributed to the work during his NVIDIA internship.

sual fidelity and alignment with input layouts. Finally, our
model allows user control over both semantic and style as
synthesizing images. Code will be available at https:
//github.com/NVlabs/SPADE.

1. Introduction
Conditional image synthesis refers to the task of gen-

erating photorealistic images conditioning on some in-
put data. Earlier methods compute the output image by
stitching pieces from a database of images [3, 13]. Re-
cent methods directly learn the mapping using neural net-
works [4, 7, 20, 39, 40, 45, 46, 47]. The latter methods are
generally faster and require no external database of images.

We are interested in a specific form of conditional im-
age synthesis, which is converting a semantic segmenta-
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tion mask to a photorealistic image. This form has a wide
range of applications such as content generation and image
editing [7, 20, 40]. We will refer to this form as semantic
image synthesis. In this paper, we show that the conven-
tional network architecture [20,40], which is built by stack-
ing convolutional, normalization, and nonlinearity layers,
is at best sub-optimal, because their normalization layers
tend to “wash away” information in input semantic masks.
To address the issue, we propose spatially-adaptive normal-
ization, a conditional normalization layer that modulates the
activations using input semantic layouts through a spatially-
adaptive, learned transformation and can effectively propa-
gate the semantic information throughout the network.

We conduct experiments on several challenging datasets
including the COCO-Stuff [5, 26], the ADE20K [48], and
the Cityscapes [8]. We show that with the help of our
spatially-adaptive normalization layer, a compact network
can synthesize significantly better results compared to sev-
eral state-of-the-art methods. Additionally, an extensive ab-
lation study demonstrates the effectiveness of the proposed
normalization layer against several variants for the semantic
image synthesis task. Finally, our method supports multi-
modal and style-guided image synthesis, enabling control-
lable, diverse outputs as shown in Figure 1.

2. Related Work

Deep generative models can learn to synthesize randomly
sampled images. Recent methods include generative adver-
sarial networks (GANs) [12] and variational autoencoder
(VAE) [22]. Our work is built on GANs but aims for the
conditional image synthesis task. The GANs consist of a
generator and a discriminator where the goal of the gener-
ator is to produce realistic images so that the discriminator
cannot tell the synthesized images apart from real ones.

Conditional image synthesis exists in many forms that dif-
fer in the type of input data. For example, class-conditional
models [4, 29, 31, 33] learn to synthesize images given cat-
egory labels. Researchers have explored various models for
generating images based on text [16, 36, 43, 46]. Another
widely-used form is image-to-image translation [18, 20, 23,
27, 49, 50], where both input and output are images. In
this work, we focus on converting segmentation masks to
photorealistic images. We assume the training dataset con-
tains paired segmentation masks and images. With the pro-
posed spatially-adaptive normalization, our compact net-
work achieves better results compared to leading methods.

Unconditional normalization layers have been an im-
portant component in modern deep networks and can be
found in various classifier designs, including the Local Re-
sponse Normalization (LRN) in the AlexNet [24] and Batch
Normalization (BN) in the Inception-v2 network [19].
Other popular normalization layers include the Instance
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Figure 2: In SPADE, the mask is first projected onto an em-
bedding space, and then convolved to produce the modula-
tion parameters γ and β. Unlike prior conditional normal-
ization methods, γ and β are not vectors, but tensors with
spatial dimensions. The produced γ and β are multiplied
and added to the normalized activation element-wise.

Normalization (IN) [38], Layer Normalization (LN) [2],
Group Normalization (GN) [41], and Weight Normalization
(WN) [37]. We label these normalization layers as uncon-
ditional as they do not depend on external data in contrast
to the conditional normalization layers discussed below.

Conditional normalization layers include the Conditional
Batch Normalization (Conditional BN) [10] and Adaptive
Instance Normalization (AdaIN) [17]. Both were first used
in the style transfer task and later adopted in various vi-
sion tasks [9, 18, 29, 31, 34, 45]. Different from the earlier
normalization techniques, conditional normalization layers
require external data and generally operate as follows. First,
layer activations are normalized to zero mean and unit de-
viation. Then the normalized activations are denormalized
by modulating the activation using a learned affine transfor-
mation whose parameters are inferred from external data.
For style transfer tasks [10, 17], the affine parameters are
used to control the global style of the output, and hence
are uniform across spatial coordinates. Different from prior
work, our proposed normalization layer applies a spatially-
varying affine transformation, making it suitable for image
synthesis from spatially-varying semantic mask.

3. Semantic Image Synthesis

Let m ∈ LH×W be a semantic segmentation mask
where L is a set of integers denoting the semantic labels,
and H and W are the image height and width. Each entry
in m denotes the semantic label of a pixel. We aim to learn
a mapping function that can convert an input segmentation
mask m to a photorealistic image.

Spatially-adaptive denormalization. Let hi denote the ac-
tivations of the i-th layer of a deep convolutional network
given a batch of N samples. Let Ci be the number of chan-
nels in the layer. Let Hi and W i be the height and width
of the activation map in the layer. We propose a new con-
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ditional normalization method called SPatially-Adaptive
(DE)normalization1 (SPADE). Similar to Batch Normaliza-
tion [19], the activation is normalized in the channel-wise
manner, and then modulated with learned scale and bias.
Figure 2 illustrates the SPADE design. The activation value
at site (n ∈ N, c ∈ Ci, y ∈ Hi, x ∈W i) is given by

γic,y,x(m)
hin,c,y,x − µi

c

σi
c

+ βi
c,y,x(m) (1)

where hin,c,y,x is the activation at the site before normaliza-
tion, µi

c and σi
c are the mean and standard deviation of the

activation in channel c:

µi
c =

1

NHiW i

∑
n,y,x

hin,c,y,x (2)

σi
c =

√
1

NHiW i

∑
n,y,x

(hin,c,y,x)
2 − (µi

c)
2. (3)

The variables γic,y,x(m) and βi
c,y,x(m) in (1) are the

learned modulation parameters of the normalization layer.
In contrast to BatchNorm [19], they depend on the input
segmentation mask and vary with respect to the location
(y, x). We use the symbol γic,y,x and βi

c,y,x to denote the
functions that convert the input segmentation mask m to
the scaling and bias values at the site (c, y, x) in the i-th ac-
tivation map. We implement the functions γic,y,x and βi

c,y,x

using a simple two-layer convolutional network, whose de-
tail design can be found in the appendix.

In fact, SPADE is related to, and is a generalization
of several existing normalization layers. First, replacing
the segmentation mask m with the image class label and
making the modulation parameters spatially-invariant (i.e.,
γic,y1,x1

≡ γic,y2,x2
and βi

c,y1,x1
≡ βi

c,y2,x2
for any y1, y2 ∈

{1, 2, ...,Hi} and x1, x2 ∈ {1, 2, ...,W i}), we arrive at
the form of Conditional Batch Normalization layer [10].
Indeed, for any spatially-invariant conditional data, our
method reduces to Conditional BN. Similarly, we can arrive
at AdaIN [17] by replacing the segmentation mask with an-
other image, making the modulation parameters spatially-
invariant and setting N = 1. As the modulation parameters
are adaptive to the input segmentation mask, the proposed
SPADE is better suited for semantic image synthesis.

SPADE generator. With SPADE, there is no need to
feed the segmentation map to the first layer of the gener-
ator, since the learned modulation parameters have encoded
enough information about the label layout. Therefore, we
discard encoder part of the generator, which is commonly
used in recent architectures [20, 40]. This simplification re-
sults in a more lightweight network. Furthermore, similarly

1Conditional normalization [10, 17] uses external data to denormalize
the normalized activations; i.e., the denormalization part is conditional.

Figure 3: Comparing results given uniform segmentation
maps: while SPADE generator produces plausible textures,
pix2pixHD [40] produces identical outputs due to the loss
of the semantic information after the normalization layer.

to existing class-conditional generators [29,31,45], the new
generator can take a random vector as input, enabling a sim-
ple and natural way for multi-modal synthesis [18, 50].

Figure 4 illustrates our generator architecture, which em-
ploys several ResNet blocks [14] with upsampling layers.
The modulation parameters of all the normalization layers
are learned using SPADE. Since each residual block oper-
ates at a different scale, SPADE downsamples the semantic
mask to match the spatial resolution.

We train the generator with the same multi-scale discrim-
inator and loss function used in pix2pixHD except that we
replace the least squared loss term [28] with the hinge loss
term [25, 30, 45]. We test several ResNet-based discrim-
inators used in recent unconditional GANs [1, 29, 31] but
observe similar results at the cost of a higher GPU mem-
ory requirement. Adding the SPADE to the discriminator
also yields a similar performance. For the loss function, we
observe that removing any loss term in the pix2pixHD loss
function lead to degraded generation results.

Why does SPADE work better? A short answer is that it
can better preserve semantic information against common
normalization layers. Specifically, while normalization lay-
ers such as the InstanceNorm [38] are essential pieces in
almost all the state-of-the-art conditional image synthesis
models [40], they tend to wash away semantic information
when applied to uniform or flat segmentation masks.

Let us consider a simple module that first applies con-
volution to a segmentation mask and then normalization.
Furthermore, let us assume that a segmentation mask with
a single label is given as input to the module (e.g., all the
pixels have the same label such as sky or grass). Under this
setting, the convolution outputs are again uniform with dif-
ferent labels having different uniform values. Now after we
apply InstanceNorm to the output, the normalized activation
will become all zeros no matter what the input semantic la-
bel is given. Therefore, semantic information is totally lost.
This limitation applies to a wide range of generator archi-
tectures, including pix2pixHD and its variant that concate-
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Figure 4: In the SPADE generator, each normalization layer uses the segmentation mask to modulate the layer activations.
(left) Structure of one residual block with SPADE. (right) The generator contains a series of SPADE residual blocks with
upsampling layers. Our architecture achieves better performance with a smaller number of parameters by removing the
downsampling layers of leading image-to-image translation networks (pix2pixHD [40]).

nates the semantic mask at all intermediate layers, as long
as a network applies convolution and then normalization to
the semantic mask. In Figure 3, we empirically show this is
precisely the case for pix2pixHD. Because a segmentation
mask consists of a few uniform regions in general, the issue
of information loss emerges when applying normalization.

In contrast, the segmentation mask in the SPADE Gen-
erator is fed through spatially adaptive modulation without
normalization. Only activations from the previous layer are
normalized. Hence, the SPADE generator can better pre-
serve semantic information. It enjoys the benefit of normal-
ization without losing the semantic input information.

Multi-modal synthesis. By using a random vector as the
input of the generator, our architecture provides a simple
way for multi-modal synthesis. Namely, one can attach an
encoder that processes a real image into a random vector,
which will be then fed to the generator. The encoder and
generator form a variational autoencoder [22], in which the
encoder tries to capture the style of the image, while the
generator combines the encoded style and the segmentation
mask information via SPADE to reconstruct the original im-
age. The encoder also serves as a style guidance network at
test time to capture the style of target images, as used in Fig-
ure 1. For training, we add a KL-Divergence loss term [22].

4. Experiments

Implementation details. We apply the Spectral Norm [30]
to all the layers in both the generator and discriminator.
The learning rates for the generator and discriminator are
set to 0.0001 and 0.0004, respectively [15]. We use the
ADAM [21] and set β1 = 0, β2 = 0.999. All the exper-
iments are conducted on an NVIDIA DGX1 with 8 V100
GPUs. We use synchronized mean and variance computa-
tion, i.e., these statistics are collected from all the GPUs.

Datasets. We conduct experiments on several datasets.

• COCO-Stuff [5] is derived from the COCO dataset [26].
It has 118,000 training images and 5,000 validation im-
ages captured from diverse scenes. It has 182 semantic
classes. Due to its large diversity, existing image synthe-
sis models perform poorly on this dataset.

• ADE20K [48] consists of 20,210 training and 2,000 val-
idation images. Similarly to COCO, the dataset contains
challenging scenes with 150 semantic classes.

• ADE20K-outdoor is a subset of the ADE20K dataset that
only contains outdoor scenes, used in Qi et al. [35].

• Cityscapes dataset [8] contains street scene images in
German cities. The training and validation set sizes are
3,000 and 500, respectively. Recent work has achieved
photorealistic semantic image synthesis results [35, 39]
on the Cityscapes dataset.

• Flickr Landscapes. We collect 41,000 photos from Flickr
and use 1,000 samples for the validation set. Instead
of manual annotation, we use a pre-trained DeepLabV2
model [6] to compute the input segmentation masks.

We train the competing semantic image synthesis methods
on the same training set and report their results on the same
validation set for each dataset.

Performance metrics. We adopt the evaluation protocol
from previous work [7, 40]. Specifically, we run a semantic
segmentation model on the synthesized images and com-
pare how well the predicted segmentation mask matches
the ground truth input. This is based on the intuition that
if the output images are realistic then a well-trained seman-
tic segmentation model should be able to predict the ground
truth label. For measuring the segmentation accuracy, we
use the mean Intersection-over-Union (mIoU) and pixel ac-
curacy (accu) metrics. We use state-of-the-art segmentation
networks for each dataset: DeepLabV2 [6, 32] for COCO-
Stuff, UperNet101 [42] for ADE20K, and DRN-D-105 [44]
for Cityscapes. In addition to segmentation accuracy, we
use the Fréchet Inception Distance (FID) [15] to measure
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Label Ground Truth CRN [7] pix2pixHD [40] Ours

Figure 5: Visual comparison of semantic image synthesis results on the COCO-Stuff dataset. Our method successfully
synthesizes realistic details from semantic labels.

Label Ground Truth CRN [7] SIMS [35] pix2pixHD [40] Ours

Figure 6: Visual comparison of semantic image synthesis results on the ADE20K outdoor and Cityscapes datasets. Our
method produces realistic images while respecting the spatial semantic layout at the same time.

COCO-Stuff ADE20K ADE20K-outdoor Cityscapes
Method mIoU accu FID mIoU accu FID mIoU accu FID mIoU accu FID

CRN [7] 23.7 40.4 70.4 22.4 68.8 73.3 16.5 68.6 99.0 52.4 77.1 104.7
SIMS [35] N/A N/A N/A N/A N/A N/A 13.1 74.7 67.7 47.2 75.5 49.7

pix2pixHD [40] 14.6 45.8 111.5 20.3 69.2 81.8 17.4 71.6 97.8 58.3 81.4 95.0
Ours 37.4 67.9 22.6 38.5 79.9 33.9 30.8 82.9 63.3 62.3 81.9 71.8

Table 1: Our method outperforms current leading methods in semantic segmentation scores (mean IoU and overall pixel
accuracy) and FID [15] on all the benchmark datasets. For mIoU and pixel accuracy, higher is better. For FID, lower is better.

the distance between the distributions of synthesized results
and the distribution of real images.

Baselines. We compare our method with three leading se-
mantic image synthesis models: the pix2pixHD model [40],
the cascaded refinement network model (CRN) [7], and
the semi-parametric image synthesis model (SIMS) [35].
pix2pixHD is the current state-of-the-art GAN-based con-
ditional image synthesis framework. CRN uses a deep net-
work that repeatedly refines the output from low to high res-
olution, while the SIMS takes a semi-parametric approach

that composites real segments from a training set and refines
the boundaries. Both the CRN and SIMS are mainly trained
using image reconstruction loss. For a fair comparison, we
train the CRN and pix2pixHD models using the implemen-
tations provided by the authors. As synthesizing an image
using SIMS requires many queries to the training dataset,
it is computationally prohibitive for a large dataset such as
COCO-stuff and the full ADE20K. Therefore, we use the
result images provided by the authors whenever possible.

Quantitative comparisons. As shown in Table 1, our
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Figure 7: Semantic image synthesis results on the Flickr Landscapes dataset. The images were generated from semantic
layout of photographs on Flickr.

method outperforms the current state-of-the-art methods by
a large margin in all the datasets. For COCO-Stuff, our
method achieves a mIoU score of 35.2, which is about 1.5
times better than the previous leading method. Our FID
is also 2.2 times better than the previous leading method.
We note that the SIMS model produces a lower FID score
but has poor segmentation performances on the Cityscapes
dataset. This is because the SIMS synthesizes an image by
first stitching image patches from the training dataset. As
using the real image patches, the resulting image distribu-
tion can better match the distribution of real images. How-
ever, because there is no guarantee that a perfect query (e.g.,
a person in a particular pose) exists in the dataset, it tends
to copy objects with mismatched segments.

Qualitative results. In Figures 5 and 6, we provide a
qualitative comparison of the competing methods. We find
that our method produces results with much better visual
quality and fewer artifacts, especially for diverse scenes in
the COCO-Stuff and ADE20K dataset. When the training
dataset size is small, the SIMS model also renders images
with good visual quality. However, the depicted content
often deviates from the input segmentation mask (e.g., the
shape of the swimming pool in the second row of Figure 6).

In Figures 7 and 8, we show more example results from
the Flickr Landscape and COCO-Stuff datasets. The pro-
posed method can generate diverse scenes with high image

Dataset
Ours vs. Ours vs. Ours vs.

CRN pix2pixHD SIMS
COCO-Stuff 79.76 86.64 N/A

ADE20K 76.66 83.74 N/A
ADE20K-outdoor 66.04 79.34 85.70

Cityscapes 63.60 53.64 51.52
Table 2: User preference study. The numbers indicate the
percentage of users who favor the results of the proposed
method over the competing method.

fidelity. More results are included in the appendix.

Human evaluation. We use Amazon Mechanical Turk
(AMT) to compare the perceived visual fidelity of our
method against existing approaches. Specifically, we give
the AMT workers an input segmentation mask and two
synthesis outputs from different methods and ask them to
choose the output image that looks more like a correspond-
ing image of the segmentation mask. The workers are given
unlimited time to make the selection. For each comparison,
we randomly generate 500 questions for each dataset, and
each question is answered by 5 different workers. For qual-
ity control, only workers with a lifetime task approval rate
greater than 98% can participate in our evaluation.

Table 2 shows the evaluation results. We find that users
strongly favor our results on all the datasets, especially on
the challenging COCO-Stuff and ADE20K datasets. For the
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Figure 8: Semantic image synthesis results on COCO-Stuff. Our method successfully generates realistic images in diverse
scenes ranging from animals to sports activities.

Method #param COCO. ADE. City.
decoder w/ SPADE (Ours) 96M 35.2 38.5 62.3

compact decoder w/ SPADE 61M 35.2 38.0 62.5
decoder w/ Concat 79M 31.9 33.6 61.1

pix2pixHD++ w/ SPADE 237M 34.4 39.0 62.2
pix2pixHD++ w/ Concat 195M 32.9 38.9 57.1

pix2pixHD++ 183M 32.7 38.3 58.8
compact pix2pixHD++ 103M 31.6 37.3 57.6

pix2pixHD [40] 183M 14.6 20.3 58.3

Table 3: mIoU scores are boosted when SPADE lay-
ers are used, for both the decoder architecture (Figure 4)
and encoder-decoder architecture of pix2pixHD++ (our im-
proved baseline over pix2pixHD [40]). On the other hand,
simply concatenating semantic input at every layer fails to
do so. Moreover, our compact model with smaller depth at
all layers outperforms all baselines.

Cityscapes, even when all the competing methods achieve
high image fidelity, users still prefer our results.

The effectiveness of SPADE. To study the impor-
tance of SPADE, we introduce a strong baseline called
pix2pixHD++, which combines all the techniques we find
useful for enhancing the performance of pix2pixHD except
SPADE. We also train models that receive segmentation
mask input at all the intermediate layers via concatenation
(pix2pixHD++ w/ Concat) in the channel direction. Finally,
the model that combines the strong baseline with SPADE
is denoted as pix2pixHD++ w/ SPADE. Additionally, we

Method COCO ADE20K Cityscapes
segmap input 35.2 38.5 62.3
random input 35.3 38.3 61.6
kernelsize 5x5 35.0 39.3 61.8
kernelsize 3x3 35.2 38.5 62.3
kernelsize 1x1 32.7 35.9 59.9
#params 141M 35.3 38.3 62.5
#params 96M 35.2 38.5 62.3
#params 61M 35.2 38.0 62.5

Sync Batch Norm 35.0 39.3 61.8
Batch Norm 33.7 37.9 61.8

Instance Norm 33.9 37.4 58.7

Table 4: The SPADE generator works with different con-
figurations. We change the input of the generator, the con-
volutional kernel size acting on the segmentation map, the
capacity of the network, and the parameter-free normaliza-
tion method. The settings used in the paper are boldfaced.

compare models with different capacity by using a different
number of convolutional filters in the generator.

As shown in Table 3 the architectures with the pro-
posed SPADE consistently outperforms its counterparts, in
both the decoder-style architecture described in Figure 4
and more traditional encoder-decoder architecture used in
pix2pixHD. We also find that concatenating segmentation
masks at all intermediate layers, an intuitive alternative to
SPADE to provide semantic signal, does not achieve the
same performance as SPADE. Furthermore, the decoder-
style SPADE generator achieves better performance than
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Figure 9: Our model attains multimodal synthesis capability when trained with the image encoder. During deployment,
by using different random noise, our model synthesizes outputs with diverse appearances but all having the same semantic
layouts depicted in the input mask. For reference, the ground truth image is shown inside the input segmentation mask.

the strong baselines even when using a smaller number of
parameters.

Variations of SPADE generator. Table 4 reports the per-
formance of variations of our generator. First, we compare
two types of the input to the generator: random noise or
downsampled segmentation maps. We find that both ren-
der similar performance, and conclude that the modulation
by SPADE alone provides sufficient signal about the input
mask. Second, we vary the type of parameter-free normal-
ization layers before applying the modulation parameters.
We observe that SPADE works reliably across different nor-
malization methods. Next, we vary the convolutional kernel
size acting on the label map, and find that kernel size of 1x1
hurts performance, likely because it prohibits utilizing the
context of the label. Lastly, we modify the capacity of the
generator network by changing the number of convolutional
filters. We present more variations and ablations in the ap-
pendix for more detailed investigation.

Multi-modal synthesis. In Figure 9, we show the mul-
timodal image synthesis results on the Flickr Landscape
dataset. For the same input segmentation mask, we sam-
ple different noise inputs to achieve different outputs. More
results are included in the appendix.

Semantic manipulation and guided image synthesis. In
Figure 1, we show an application where a user draws dif-
ferent segmentation masks, and our model renders the cor-
responding landscape images. Moreover, our model allows
users to choose an external style image to control the global
appearances of the output image. We achieve it by replac-
ing the input noise with the embedding vector of the style
image computed by the image encoder.

5. Conclusion
We have proposed the spatially-adaptive normalization,

which utilizes the input semantic layout while performing
the affine transformation in the normalization layers. The
proposed normalization leads to the first semantic image
synthesis model that can produce photorealistic outputs for
diverse scenes including indoor, outdoor, landscape, and
street scenes. We further demonstrate its application for
multi-modal synthesis and guided image synthesis.
Acknowledgments We thank Alexei A. Efros and Jan
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A. Additional Implementation Details

Generator. The architecture of the generator consists of a
series of the proposed SPADE ResBlks with nearest neigh-
bor upsampling. We train our network using 8 GPUs si-
multaneously and use the synchronized version of the batch
normalization. We apply the spectral normalization [30] to
all the convolutional layers in the generator. The architec-
tures of the proposed SPADE and SPADE ResBlk are given
in Figure 10 and Figure 11, respectively. The architecture
of the generator is shown in Figure 12.
Discriminator. The architecture of the discriminator fol-
lows the one used in the pix2pixHD method [40], which
uses a multi-scale design with instance normalization (IN).
The only difference is that we apply the spectral normal-
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Figure 10: SPADE Design. The term 3x3-Conv-k denotes a
3-by-3 convolutional layer with k convolutional filters. The
segmentation map is resized to match the resolution of the
corresponding feature map using nearest-neighbor down-
sampling.

SPADE

ReLU

3x3-Conv-k

SPADE

ReLU

3x3-Conv-k

SPADE

ReLU

3x3-Conv-k

SPADE ResBlk(k)

Figure 11: SPADE ResBlk. The residual block design
largely follows that in [29] and [31]. We note that for the
case that the number of channels before and after the resid-
ual block is different, the skip connection is also learned
(dashed box in the figure).
ization to all the convolutional layers of the discriminator.

The details of the discriminator architecture is shown in Fig-
ure 13.

Linear(256, 16384) 

Reshape(1024, 4, 4)

SPADE ResBlk(1024), Upsample(2)

SPADE ResBlk(1024), Upsample(2)

SPADE ResBlk(1024), Upsample(2)

SPADE ResBlk(512), Upsample(2)

SPADE ResBlk(256), Upsample(2)

SPADE ResBlk(128), Upsample(2)

SPADE ResBlk(64), Upsample(2)

3x3Conv-3, Tanh

Figure 12: SPADE Generator. Different from prior im-
age generators [20, 40], the semantic segmentation mask is
passed to the generator through the proposed SPADE Res-
Blks in Figure 11.

Image Encoder. The image encoder consists of 6 stride-2
convolutional layers followed by two linear layers to pro-
duce the mean and variance of the output distribution as
shown in Figure 14.
Learning objective. We use the learning objective function
in the pix2pixHD work [40] except that we replace its LS-
GAN loss [28] term with the Hinge loss term [25, 30, 45].
We use the same weighting among the loss terms in the ob-
jective function as that in the pix2pixHD work.

When training the proposed framework with the image
encoder for multi-modal synthesis and style-guided image
synthesis, we include a KL Divergence loss:

LKLD = DKL(q(z|x)||p(z))

where the prior distribution p(z) is a standard Gaussian dis-
tribution and the variational distribution q is fully deter-
mined by a mean vector and a variance vector [22]. We
use the reparamterization trick [22] for back-propagating
the gradient from the generator to the image encoder. The
weight for the KL Divergence loss is 0.05.

In Figure 15, we overview the training data flow. The
image encoder encodes a real image to a mean vector and
a variance vector. They are used to compute the noise in-
put to the generator via the reparameterization trick [22].
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4x4-↓2-Conv-64, LReLU

4x4-↓2-Conv-128, IN, LReLU

4x4-↓2-Conv-256, IN, LReLU

4x4-Conv-512, IN, LReLU

Instance Norm, LReLU

4x4-Conv-1

Concat

Figure 13: Our discriminator design largely follows that in
the pix2pixHD [40]. It takes the concatenation the segmen-
tation map and the image as input. It is based on the Patch-
GAN [20]. Hence, the last layer of the discriminator is a
convolutional layer.

3x3-↓2-Conv-64, IN, LReLU

3x3-↓2-Conv-128, IN, LReLU

3x3-↓2-Conv-256, IN, LReLU

3x3-↓2-Conv-512, IN, LReLU

3x3-↓2-Conv-512, IN, LReLU

3x3-↓2-Conv-512, IN, LReLU

Linear(256)

Reshape(8192, 1, 1)

Linear(256)

𝜇 𝜎𝟐

Figure 14: The image encoder consists a series of convolu-
tional layers with stride 2 followed by two linear layers that
output a mean vector µ and a variance vector σ.

The generator also takes the segmentation mask of the in-

put image as input with the proposed SPADE ResBlks. The
discriminator takes concatenation of the segmentation mask
and the output image from the generator as input and aims
to classify that as fake.
Training details. We perform 200 epochs of training on the
Cityscapes and ADE20K datasets, 100 epochs of training
on the COCO-Stuff dataset, and 50 epochs of training on the
Flickr Landscapes dataset. The image sizes are 256x256,
except the Cityscapes at 512x256. We linearly decay the
learning rate to 0 from epoch 100 to 200 for the Cityscapes
and ADE20K datasets. The batch size is 32. We initialize
the network weights using Glorot initialization [11].

Image

Encoder

Generator

Discriminator

Concat

Figure 15: The image encoder encodes a real image to a la-
tent representation for generating a mean vector and a vari-
ance vector. They are used to compute the noise input to the
generator via the reparameterization trick [22]. The gener-
ator also takes the segmentation mask of the input image as
input via the proposed SPADE ResBlks. The discriminator
takes concatenation of the segmentation mask and the out-
put image from the generator as input and aims to classify
that as fake.
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B. Additional Ablation Study

Method COCO. ADE. City.
Ours 35.2 38.5 62.3
Ours w/o Perceptual loss 24.7 30.1 57.4
Ours w/o GAN feature matching loss 33.2 38.0 62.2
Ours w/ a deeper discriminator 34.9 38.3 60.9
pix2pixHD++ w/ SPADE 34.4 39.0 62.2
pix2pixHD++ 32.7 38.3 58.8
pix2pixHD++ w/o Sync Batch Norm 27.4 31.8 51.1
pix2pixHD++ w/o Sync Batch Norm, 26.0 31.9 52.3

and w/o Spectral Norm
pix2pixHD [40] 14.6 20.3 58.3

Table 5: Additional ablation study results regarding mIoU
scores: the table shows that both the perceptual loss and
GAN feature matching loss terms are important. Making
the discriminator deeper does not lead to a performance
boost. The table also shows that the components (Synchro-
nized Batch Normalization, Spectral Normalization, TTUR,
Hinge loss, and SPADE) used in the proposed method also
helps our strong baseline, pix2pixHD++.

Table 5 provides additional ablation study results ana-
lyzing the contribution of individual components in the pro-
posed method. We first find that both of the perceptual loss
and GAN feature matching loss inherited from the learn-
ing objective function of the pix2pixHD [40] are impor-
tant. Removing any of them leads to a performance drop.
We also find that increasing the depth of the discrimina-
tor by inserting one more convolutional layer to the top of
the pix2pixHD discriminator does not lead to a performance
boost.

In Table 5, we also analyze the effectiveness of each
component used in our strong baseline, the pix2pixHD++
method, derived from the pix2pixHD method. We
found that the spectral norm, synchronized batch norm,
TTUR [15], and hinge loss all contribute to the perfor-
mance boost. However, with adding the SPADE to the
strong baseline, the performance further improves. Note
that pix2pixHD++ w/o Sync Batch Norm and w/o Spec-
tral Norm still differs from pix2pixHD in that it uses the
hinge loss, TTUR, a large batch size, and Glorot initializa-
tion [11].

C. Additional Results
In Figure 16, 17, and 18, we show additional synthe-

sis results from the proposed method on the COCO-Stuff
and ADE20K datasets with comparison to those from the
CRN [7] and pix2pixHD [40] methods.

In Figure 19 and 20, we show additional synthesis re-
sults from the proposed method on the ADE20K-outdoor
and Cityscapes datasets with comparison to those from the
CRN [7], SIMS [35], and pix2pixHD [40] methods.

In Figure 21, we show additional multi-modal synthesis
results from the proposed method. As sampling different
z from a standard multivariate Gausssian distribution, we
synthesize images of diverse appearances.

In the accompanying video, we demonstrate our seman-
tic image synthesis interface. We show how a user can cre-
ate photorealistic landscape images by painting semantic
labels on a canvas. We also show how a user can synthe-
size images of diverse appearances for the same semantic
segmentation mask as well as transfer the appearance of a
provided style image to the synthesized one.
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Label Ground Truth CRN pix2pixHD Ours

Figure 16: Additional results with comparison to those from the CRN [7] and pix2pixHD [40] methods on the COCO-Stuff
dataset.
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Label Ground Truth CRN pix2pixHD Ours

Figure 17: Additional results with comparison to those from the CRN [7] and pix2pixHD [40] methods on the COCO-Stuff
dataset.
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Label Ground Truth CRN pix2pixHD Ours

Figure 18: Additional results with comparison to those from the CRN [7] and pix2pixHD [40] methods on the ADE20K
dataset.
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Label Ground Truth CRN SIMS pix2pixHD Ours

Figure 19: Additional results with comparison to those from the CRN [7], SIMS [35], and pix2pixHD [40] methods on the
ADE20K-outdoor dataset. 17
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Figure 20: Additional results with comparison to those from the CRN [7], SIMS [35], and pix2pixHD [40] methods on the
Cityscapes dataset.
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Label Ground Truth Multi-modal results

Figure 21: Additional multi-modal synthesis results on the Flickr Landscapes Dataset. By sampling latent vectors from a
standard Gaussian distribution, we synthesize images of diverse appearances.
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